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a b s t r a c t

The Galerkin method offers a powerful tool in the solution of differential equations and
function approximation on the real interval [�1, 1]. By expanding the unknown function
in appropriately chosen global basis functions, each of which explicitly satisfies the given
boundary conditions, in general this scheme converges exponentially fast and almost
always supplies the most terse representation of a smooth solution. To date, typical
schemes have been defined in terms of a linear combination of two Jacobi polynomials.
However, the resulting functions do not inherit the expedient properties of the Jacobi poly-
nomials themselves and the basis set will not only be non-orthogonal but may, in fact, be
poorly conditioned. Using a Gram-Schmidt procedure, it is possible to construct, in an
incremental fashion, polynomial basis sets that not only satisfy any linear homogeneous
boundary conditions but are also orthogonal with respect to the general weighting func-
tion ð1� xÞað1þ xÞb. However, as it stands, this method is not only cumbersome but does
not provide the structure for general index n of the functions and obscures their depen-
dence on the parameters ða; bÞ. In this paper, it is shown that each of these Galerkin basis
functions, as calculated by the Gram-Schmidt procedure, may be written as a linear com-
bination of a small number of Jacobi polynomials with coefficients that can be determined.
Moreover, this terse analytic representation reveals that, for large index, the basis functions
behave asymptotically like the single Jacobi polynomial Pða;bÞn ðxÞ. This new result shows that
such Galerkin bases not only retain exponential convergence but expedient function-fitting
properties too, in much the same way as the Jacobi polynomials themselves. This powerful
methodology of constructing Galerkin basis sets is illustrated by many examples, and it is
shown how the results extend to polar geometries. In exploring more generalised defini-
tions of orthogonality involving derivatives, we discuss how a large class of differential
operators may be discretised by Galerkin schemes and represented in a sparse fashion
by the inverse of band-limited matrices.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Spectral methods are a widely used tool in the solution of differential equations, function approximation and variational
problems [1,2]. Their utility is based on the fact that if the solution sought is smooth, usually only a few terms in an expan-
sion of global basis functions are needed to represent it to high accuracy. This efficiency comes about because the spectral
coefficients, fn, typically tend to zero faster than any algebraic power of their index n, showing either exponential or some-
times super-exponential convergence [3]. On the non periodic canonical interval [�1, 1], the Jacobi polynomials are a well-
known class of polynomials exhibiting spectral convergence, of which particular examples are Chebyshev polynomials of the
first and second kinds, and Legendre polynomials [3]. Chebyshev polynomials are often a popular choice since, via their links
with Fourier methods, they have a fast transform.
. All rights reserved.
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When approximating a given function by a spectral expansion, the choice of which Jacobi polynomials to use can rest on
the required asymptotic behaviour of the error. For example, Chebyshev polynomials of the first kind are well-known to min-
imise the maximum error between any function and its approximant, the so-called minimax or L1 norm characteristic [4,5].
Such an expedient property has led to widespread use of Chebyshev approximants in numerical computation [6]. Lesser
known but, in the appropriate case no less useful, is the property that the Chebyshev polynomials of the second kind min-
imise the error in the L1 norm, that is, the integrated absolute error between the function and its approximant. These prop-
erties are intimately tied to certain properties of the polynomials themselves: Chebyshev polynomials of the first kind are
equal-ripple (uniform oscillations) and those of the second kind are equal-area (the area under the curve between any
two consecutive zeros is constant). Lastly, Legendre polynomials minimise the error between any function and its approx-
imant in the L2 norm although this is not associated with any obvious graphical property of the polynomials themselves.

Physical problems almost always involve known boundary conditions which can be fully exploited in a Galerkin method
[7,8,3]. Such a scheme adopts an expansion in terms of a global basis set constructed so that each member explicitly satisfies
the boundary conditions; by encoding this additional information, out of all numerical methods, this approach almost always
provides the most terse numerical representation. If an analytic solution of a differential equation is known but difficult to
compute, it is expedient to write it in terms of a spectral expansion (for instance in Chebyshev polynomials) which, after
finding the coefficients, is easy to evaluate. In this paper, we shall see such an approximation method can be extended by
using an expansion in terms of an exponentially convergent orthogonal Galerkin basis. Furthermore, as in functional approx-
imation by Jacobi polynomials, the principal error stems from the first ignored term in the expansion which can be chosen in
an optimal fashion, for instance, to be quasi-equal-ripple and therefore for the approximant to minimise the L1 error.

Unlike a spectral expansion of a known function, the error in the solution of a differential equation or variational problem
is not well approximated by the first ignored term (since the error contaminates all coefficients). It is therefore not possible
to prescribe in advance, by choice of the basis set, the asymptotic behaviour of the error. However, as we shall see subse-
quently, Galerkin schemes remain a useful tool since, not only do they converge exponentially fast but, because the boundary
conditions are already encoded, in general they converge faster than canonical spectral methods. In a traditional Galerkin
method, a differential equation is discretised by imposing an orthogonality condition to the same set of basis functions. How-
ever, other variants include imposing orthogonality to a different set of functions in the so-called Petrov-Galerkin scheme
and, by extending the basis sets to those of compact support, Galerkin schemes form the foundation of the finite-element
method [9]. By adopting a Galerkin expansion at the outset, often subsequent analysis is eased since the boundary conditions
may, essentially, be dispensed with. By contrast, in other pseudospectral schemes that could be employed to solve differen-
tial equations (e.g. Chebyshev-tau or a collocation method), the boundary conditions are carried through to the end of the
calculation where they are imposed explicitly as additional rows of the discretised matrix system.

There are several particular cases where Galerkin expansions have the greatest utility. First are problems where terseness
of the solution is pivotal. Such a case can arise when forming low-order models of a system, or when using symbolic com-
putation to produce an approximation to the solution. To expedite the solution of matrix problems symbolically, the matrix
size should be reduced as much as possible, a property which Galerkin methods can readily provide. Second are variational
problems, where often integration by parts of the raw equations produces awkward boundary terms. Unless one is very
lucky, the boundary conditions cannot be used to evaluate these terms and no further progress is possible. Within a Galerkin
method, such boundary terms can always be evaluated and a matrix system then constructed [10]. Third, Galerkin methods
often exhibit the lowest condition number dependence on matrix size. Such an issue may arise when solving a problem to
very high resolution. For instance, although a standard Chebyshev-tau method may theoretically be capable of resolving a
fine-scale solution, its numerical discretisation may be too ill-conditioned and any answer swamped with numerical error
in finite precision (although, solving the system using high precision will give an accurate answer). Galerkin methods often
have a low scaling of the condition number with matrix size, thus minimising the computational error and allowing high
resolution in finite precision. The main drawback of Galerkin methods is that, in general, no fast-transform exists and, until
now, there has been no generally accepted method of constructing the required basis sets for arbitrary boundary conditions.

Galerkin schemes are easily constructed when considering linear homogeneous boundary conditions. Note that if the gi-
ven boundary conditions are not homogeneous they can always be made so with the addition of an appropriate function to
the unknown solution, with the associated modification of the equations. To date, typical schemes involve forming a linear
combination of a Jacobi polynomial (usually a Chebyshev polynomial, TnðxÞ) with one of neighbouring index or some fixed
low-order polynomial in order to satisfy the required conditions [11,7,3]. For example, the following are two possible choices
of basis sets that satisfy the boundary condition f 0ð1Þ ¼ 0:
/nðxÞ ¼ TnðxÞ � n2T1ðxÞ; vnðxÞ ¼ ðn� 1Þ2TnðxÞ � n2Tn�1ðxÞ:
It is clear that /nðxÞ becomes increasingly ill-conditioned as n increases since, when normalised, /nðxÞ ! T1ðxÞ ¼ x as n!1
which is independent of n. The second case, vnðxÞ, is better conditioned but forms a basis set that is neither orthogonal nor
close to equal-ripple. Thus in recombining Chebyshev polynomials, many of their optimal properties have been lost.

An alternative method to construct a basis set is to use a Gram-Schmidt procedure in the following way. The lowest-de-
gree polynomial that satisfies the boundary conditions is W1ðxÞ ¼ 1 (up to a normalisation). The next element W2ðxÞ is writ-
ten as an arbitrary quadratic in x, whose coefficients are determined by imposing (i) the boundary condition and (ii)
orthogonality to W1ðxÞ ¼ 1. Note that we need to jump degree from 0 to 2: there is no non-trivial linear form that will satisfy
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these two conditions. In fact, for a general first order boundary condition, W1ðxÞ is linear in x which, for this particular case,
reduces to a constant. We are at liberty to define orthogonality in any way we please; one such choice is the weighted inte-
gral over the domain between two functions f and g:
1 Thi
known
Z 1

�1
f ðxÞgðxÞwðxÞdx ¼ 0;
where we shall choose the arbitrary weight function as wðxÞ ¼ ð1� x2Þ�1=2 for reasons that will shortly become apparent.
This procedure defines W2 ¼ 1þ 4x� 2x2 up to a normalisation. By defining W3ðxÞ as a cubic whose coefficients are chosen
by imposing the boundary condition and orthogonality to W1 and W2, it is clear that, by continuing in this fashion, an orthog-
onal Galerkin set can be constructed:
f1;1þ 4x� 2x2;9� 15x� 18x2 þ 17x3; . . .g: ð1Þ
Two points are immediately apparent. First, there is no means available of determining the asymptotic properties of the basis
functions. Put another way, it is impossible to know in advance how Wn will behave without first computing it (and, in order
to do so, every Wm;m 6 n). Second, although guaranteed to produce an orthogonal set, there is no evident reason why an
expansion in such a basis set will converge exponentially fast. In addition, although not obvious from the computations
of W1;W2;W3 above, in general this approach is very cumbersome, requiring computer algebra to compute Wn. This is be-
cause the polynomial coefficients grow rapidly with degree and lead to severe accuracy problems in finite precision.1 We
shall shortly return to this example after introducing some further concepts that are central to this paper.

In certain special cases Galerkin bases can be written down in closed form, for which the most basic example occurs when
considering the boundary condition f ð1Þ ¼ 0. A basis set capable of representing a function on [�1, 1], which vanishes at
x ¼ 1 and for which all members are mutually orthogonal with respect to the weight function wðxÞ ¼ ð1� xÞað1þ xÞb may
be written as
WnðxÞ ¼ ð1� xÞPðaþ2;bÞ
n�1 ðxÞ; n P 1;
since Wnð1Þ clearly vanishes and, applying the standard orthogonality relation of Jacobi polynomials, we see that
Z
WnðxÞWmðxÞwðxÞdx ¼

Z 1

�1
Pðaþ2;bÞ

n�1 Pðaþ2;bÞ
m�1 ð1� xÞaþ2ð1þ xÞbdx ¼ hndnm
for some constants hn. Using the standard Jacobi-polynomial index recurrence relations (A.1) and (A.3) we can write
WnðxÞ ¼
X3

i¼1

ciðnÞPðaþ2;bÞ
nþ1�i ðxÞ; n P 2; ð2Þ
for coefficients ciðnÞ which take the (unnormalised) form
c1ðnÞ ¼ nðbþ aþ 2nÞðaþ bþ nþ 2Þ;
c2ðnÞ ¼ �ðbþ 1þ 2nþ aÞð2n2 þ 2nbþ 2nþ 2naþ baþ a2 þ 3aþ 2þ bÞ;
c3ðnÞ ¼ ðaþ nþ 1Þðbþ n� 1Þðbþ aþ 2nþ 2Þ;
for n P 2 and W1ðxÞ ¼ 1� x. Note that the ci take on the ratio [1, �2, 1] as n!1, a property that has great significance. By
applying index recurrence identity (A.3) twice, we see that
Pða;bÞn ðxÞ � Pðaþ2;bÞ
n ðxÞ � 2Pðaþ2;bÞ

n�1 ðxÞ þ Pðaþ2;bÞ
n�2 ðxÞ ð3Þ
as n!1, an expression which involves the same ratio of coefficients. It follows immediately that, up to a normalisation,
WnðxÞ � Pða;bÞn ðxÞ for large n (except possibly in boundary layers). As we explore further examples in this paper, Pascal-trian-
gle-like ratios of the ci will continue to spring up, which point to a simple asymptotic description, as here.

Suppose now we consider constructing a second basis set, from scratch, that satisfies f ð1Þ ¼ 0 and is of the form (2). This
is a severely truncated Gram-Schmidt method where the nth basis function relies on only three, rather than nþ 1, unknown
coefficients which are found by imposing the boundary condition, some normalisation condition (which for the moment we
ignore) and orthogonality only to the first polynomial element 1� x. It is clear that such a scheme must reconstruct the
mutually orthogonal basis set that we first thought of; however, in contrast with a typical Gram-Schmidt construction,
we only impose orthogonality with respect to one polynomial rather than all the polynomials of lesser degree. The fact that
orthogonality extends to all possible pairings of basis functions is remarkable, a property termed auto-orthogonality.

We now extend and revisit the case considered previously with the explicit Gram-Schmidt process and the boundary con-
dition f 0ð1Þ ¼ 0. Instead of expanding in generalised polynomials as before, we look for a vastly truncated basis set of the
form (2) with a ¼ b ¼ �1=2. The coefficients ci are found by imposing (i) the boundary condition, (ii) orthogonality with re-
spect to W1ðxÞ and (iii) an arbitrary normalisation. It is far from evident that the set of Wn so produced will be mutually
s property is due to the fact, as we shall see shortly, that Wn has a terse representation in terms of Jacobi polynomials whose monomial coefficients are
to increase exponentially with n.
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orthogonal, since we have merely only imposed orthogonality to W1. But auto-orthogonality holds here also and this prescrip-
tion is sufficient to generate an orthogonal set. The coefficients ci are
2 The
each en
c1 ¼ 4nðn� 1Þð2n� 1Þð3n2 � 3n� 1Þ;
c2 ¼ �4n2ðn� 1Þð�13þ 12n2Þ;
c3 ¼ ð2n� 3Þð1þ 2nÞ2ð3n2 þ 3n� 1Þ;
and take on the ratio [1, �2, 1] as n!1. It follows from (3) that
WnðxÞ � Pð�1=2;�1=2Þ
n ðxÞ ¼ TnðxÞ;
that is, the basis functions become asymptotically similar to the Chebyshev polynomials themselves. This suggests that the
basis functions converge exponentially fast, which we find to be the case, and also quasi-equal-ripple,2 asymptotically reduc-
ing the error between any function and its approximant in the L1 norm. In this case, the (normalised) basis functions satisfy
Z 1

�1
WnWmð1� x2Þ�1=2dx ¼ dnm;
which motivated the choice of weight function in the standard Gram-Schmidt construction of (1). It is clear, however, that
other choices of weight function are possible too. For instance, the weight function wðxÞ ¼ ð1� x2Þ1=2, corresponding to
a ¼ b ¼ 1=2, would result (with modified ci) in basis functions that behave, as n!1, like Un, Chebyshev polynomials of
the second kind.

This terse representation of Galerkin basis sets extends to boundary conditions of arbitrary order at either end (or both
ends) of the interval [�1, 1] and weight function ð1� xÞað1þ xÞb for arbitrary ða; bÞ. A proof of the construction of these auto-
orthogonal basis sets along with their expedient properties is given, in so far as is currently possible, in an accompanying
paper [12]. However, rather than dwell on formal proofs, it is the purpose of this paper to guide the reader through a brief
tour of examples, showing how to construct such a basis set with any given set of boundary conditions.

A lengthy compendium of Galerkin basis sets that satisfy physically motivated boundary conditions is given in the tech-
nical report [13] accessible at the permanent URL http://escholarship.org/uc/item/9vk1c6cm. A quick inspection of this re-
source would immediately reveal that, in general, the formulae for the Jacobi coefficients, ci, appearing in cases where either
ða; bÞ and/or the boundary conditions (of a certain order) were kept arbitrary are extremely lengthy. We do not expect a user
to type out these expressions, but merely to copy and paste as required from this online resource. The remainder of the paper
is arranged as follows. In the next section, it is shown how to construct a variety of basis sets on the domain ½�1;1�, with
boundary conditions imposed at either one end of the interval or both. In Section 3, the extension of these results to a polar
geometry, where regularity of the basis functions must also be taken into account, is discussed. Lastly, in Section 4 we con-
sider more general Sobolev-type orthogonality, involving the derivatives of functions. The last section comprises a brief dis-
cussion of the mathematical framework on which these results rest, and possible future research directions.

2. Construction of orthogonal Galerkin polynomials on [�1, 1]

In the following section, it is shown how to construct a family of orthogonal polynomials on [�1, 1] that satisfy arbitrary
boundary conditions involving derivatives of given maximum degree. By making a suitable linear transformation, all the re-
sults extend to the interval ½a; b�, leaving invariant the number and the maximum derivative appearing in the boundary con-
ditions imposed (although their precise form will change). It is only possible to specify boundary conditions at the ends of
the domain: x ¼ �1. Brief experimentation shows that auto-orthogonality does not hold with either interior boundary con-
ditions or replacing any homogeneous boundary condition by a homogeneous integral condition. In fact, it is useful to sep-
arate so-called one-sided boundary conditions (that is, imposed at either x ¼ 1 or x ¼ �1 but not both), from the general
mixed so-called two-sided case. This difference is not only important in what is accessible to proof in [12], but the one-sided
case affords considerable simplification of the basis set construction.

2.1. One sided boundary conditions

Consider a set of M boundary conditions involving derivatives of the function at x ¼ 1 only and of degree at most N � 1.
Clearly M cannot exceed N unless there is degeneracy in the conditions. The nth basis function can be written
WnðxÞ ¼
XNþ1

i¼1

ciðnÞPðaþN;bÞ
Mþn�i ðxÞ; n P N �M þ 1; ð4Þ
but it is clear that, for n < N �M þ 1, this form breaks down since Jacobi polynomials must have a non-negative degree. The
first few basis functions must instead be found by using the explicit Gram-Schmidt process, by determining the coefficients
ci in
qualifier ‘‘quasi” refers to a Gibbs type departure from strict equal-ripple (or equivalent property) and that is confined to narrow boundary layers at
d.

http://escholarship.org/uc/item/9vk1c6cm
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WnðxÞ ¼
XMþn

i¼1

ciðnÞPðaþN;bÞ
i�1 ðxÞ; n 6 N �M; ð5Þ
and imposing the M boundary conditions, one normalisation condition, and orthogonality to Wm with weight wðxÞ for
1 6 m < n. Note that the construction of the first N �M basis functions is equivalent to that in (1), but here Jacobi polyno-
mials rather than monomials are used. It is clear that the basis set discussed in the introduction that satisfies f 0ð1Þ ¼ 0 is of
the above form with N ¼ 2;M ¼ 1. It is also apparent that increasing M does not change the essential structure of the basis,
but merely increases the degree of all the polynomials; this is caused by providing each Wn with the degrees of freedom it
needs to satisfy the extra boundary conditions. The functions Wn have the property that
Z 1

�1
WnðxÞWmðxÞð1� xÞað1þ xÞbdx ¼ hndnm ð6Þ
for some hn determined by the choice of normalisation. In addition, the ci have a Pascal-triangle-like asymptotic ratio leading
to
WnðxÞ � Pða;bÞnþM�1ðxÞ:
Thus the asymptotic form of any Galerkin basis function is that of a single Jacobi polynomial. A similar construction holds if
the boundary conditions are imposed only at x ¼ �1. We may simply use the transformation x! �x and the fact that
Pða;bÞn ð�xÞ ¼ ð�1ÞnPðb;aÞn ðxÞ
to swap the roles of a and b, leading to
WnðxÞ ¼

PMþn

i¼1
ciðnÞPða;bþNÞ

i�1 ðxÞ; 1 6 n 6 N �M;

PNþ1

i¼1
ciðnÞPða;bþNÞ

Mþn�i ðxÞ; n P N �M þ 1:

8>>><>>>: ð7Þ
A peculiar case arises in the determination of ci, for n 6 N �M, when the boundary conditions do not supply enough con-
straints on the function. For instance, W1ðxÞ ¼ c1 þ c2PðaþN;bÞ

1 ðxÞ is not determined (even up to a normalisation) by the condi-
tion W00nð1Þ ¼ 0. Indeed, imposing this same condition on W2ðxÞ ¼ c1 þ c2PðaþN;bÞ

1 ðxÞ þ c3PðaþN;bÞ
2 ðxÞ requires only that c3 ¼ 0,

while orthogonality with respect to W1 still leaves three degrees of freedom among W1 and W2. While we could leave the
undetermined ci arbitrary, it is clear that the space of linear combinations of these functions is also spanned by
W1ðxÞ ¼ 1;W2ðxÞ ¼ Pða;bÞ1 ðxÞ, which are also orthogonal in the required manner of (6).

The reader may wonder how the coefficients ci are calculated; we defer discussion of this until Section 2.5.

2.2. Two sided boundary conditions

By using (A.4) it is clear that (4) can be written in the symmetric form
WnðxÞ ¼
X2Nþ1

i¼1

ciP
ðaþN;bþNÞ
Mþn�i ðxÞ; n P 2N �M þ 1; ð8Þ
where we solve for the 2N þ 1 coefficients using the M boundary conditions, one normalisation condition, and 2N �M
orthogonality conditions. The first 2N �M functions are constructed using the standard Gram-Schmidt procedure.

It is also apparent that the one-sided form of (7) with boundary conditions imposed only at x ¼ �1 can be written in pre-
cisely the same way. It is therefore unsurprising that (8) is the most general representation required for any combination of
M boundary conditions of degree N � 1 acting at either (or both) of the endpoints.

2.3. Examples

We now consider some specific examples, taken from the compendium [13]. First, consider taking a ¼ b ¼ 1=2 and the
two conditions at x ¼ 1,
W00nð1Þ ¼ Wnð1Þ ¼ 0:
Inserting M ¼ 2 and N ¼ 3 into (4) we find that the (unnormalised) basis functions are
Wn ¼
1� x; n ¼ 1;P4
i¼1

ciP
ð7=2;1=2Þ
2þn�i ðxÞ; n P 2;

8<: ð9Þ
where ci are found to be (up to a normalisation)
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c1 ¼ 8ðn� 1Þðnþ 1Þ2ðnþ 4Þð2nþ 3Þð9n2 þ 27n� 35Þ;
c2 ¼ �12ðnþ 1Þðn� 1Þðnþ 4Þð2nþ 5Þð18n3 þ 93n2 þ 131n� 63Þ;
c3 ¼ 6ðn� 1Þðnþ 3Þð2nþ 7Þð2nþ 3Þð18n3 þ 123n2 þ 251nþ 251Þ;
c4 ¼ �ðnþ 3Þð2nþ 7Þð2n� 1Þð2nþ 5Þ2ð9n2 þ 45nþ 1Þ:
Note that we have removed a common factor of nðnþ 5Þ=16, which appears when substituting a ¼ b ¼ 1=2 into the general
expression in [13]. The coefficients ½c1; c2; c3; c4� � 144n7½1;�3;3;�1�, the same ratio that appears when applying (A.3) thrice
to Pða;bÞn ðxÞ. It follows that
Wn � Pð1=2;1=2Þ
n ðxÞ ¼ UnðxÞ;
the Chebyshev polynomials of the second kind, from which Wn inherit optimal properties (at least asymptotically).
Second, consider the two-sided boundary conditions at x ¼ �1
Wnð�1Þ ¼ W0nð1Þ ¼ 0;
with a ¼ b ¼ �1=2. A Galerkin basis can be written
Wn ¼

ðxþ 1Þðx� 3Þ; n ¼ 1;
ðxþ 1Þð67x2 � 125xþ 40Þ; n ¼ 2;P5
i¼1

ciP
ð5=2;5=2Þ
2þn�i ðxÞ; n P 3;

8>>><>>>: ð10Þ
where ci are found to be (up to a normalisation)
c1 ¼ 16n2ðnþ 1Þðnþ 3Þðnþ 4Þð24n3 þ 12n4 � 1� 4n2 � 16nÞ;
c2 ¼ �32n2ðnþ 2Þðnþ 3Þð2nþ 1Þð2nþ 5Þð6n2 þ 6n� 7Þ;
c3 ¼ �8ðnþ 1Þð2nþ 3Þð2nþ 5Þð12n6 þ 72n5 � 16n3 þ 116n4 � 61n2 þ 102nþ 30Þ;
c4 ¼ 8nðnþ 2Þð2nþ 1Þð2nþ 3Þ2ð2nþ 5Þð6n2 þ 18nþ 5Þ;
c5 ¼ ðnþ 2Þð2nþ 1Þð2nþ 3Þð2nþ 5Þð2n� 1Þð12n4 þ 72n3 þ 140n2 þ 96nþ 15Þ:
Note that ½c1; c2; c3; c4; c5� � 192 n9½1;0;�2;0;1�. The same ratio is found by applying each of (A.3) and (A.4) twice to Pða;bÞn ðxÞ.
It follows that
Wn � Pð�1=2;�1=2Þ
n ðxÞ ¼ TnðxÞ;
the Chebyshev polynomials of the first kind, from which Wn inherit optimal properties (at least asymptotically).
Fig. 1(a) and (b) shows plots of example members of these two basis sets. The most visual characteristics are the quasi-

equal-area property in (a) and the quasi-equal-ripple property in (b). In each case the basis functions are normalised accord-
ing to
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quasi-equal-ripple property in (b). The functions are normalised by relation (11) in which, in (b), Wnð1Þ tends to a constant only for n!1.
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Z 1

�1
WnðxÞWmðxÞð1� xÞað1þ xÞbdx ¼ dnm: ð11Þ
For each of the above examples, more general (and much lengthier) expressions involving arbitrary ða; bÞ may be found in
[13].

2.4. Numerical example

Here we demonstrate the asymptotic and exponential convergence properties of the basis functions in the specific case
a ¼ b ¼ �1=2 by considering the simple eigenvalue problem
y00ðxÞ þ k2yðxÞ ¼ 0 ð12Þ
with boundary conditions yð�1Þ ¼ y0ð1Þ ¼ 0. The analytic solution is
yðxÞ ¼ cosðkxÞ þ sinðkxÞ; k ¼ ð2qþ 1Þp
4

;

for any integer q P 0. We now test a variety of methods against the known solution with q ¼ 0: (i) the Jacobi–Galerkin meth-
od (ii) a recombined Chebyshev–Galerkin scheme and (iii) a Chebyshev-tau method [2]. For method (i), the (normalised) ba-
sis functions are described above in Section 2.3; in method (ii), a (non-orthogonal) basis set is defined by recombining
Chebyshev polynomials:
WnðxÞ ¼ TnðxÞ þ AT0ðxÞ þ BT1ðxÞ;
where A and B are chosen to satisfy the two boundary conditions [3]. For the two Galerkin approaches, writing
yNðxÞ ¼
XN

i¼1

v iWiðxÞ
we obtain the discretised system for the spectral coefficients v:
Av þ k2Bv ¼ 0;
where
Aij ¼
Z 1

�1

d2Wj

dx2 WiwðxÞdx; Bij ¼
Z 1

�1
WjWiwðxÞdx ¼ dij:
The weight functions wðxÞ appearing above are (i) wðxÞ ¼ ð1� x2Þ�1=2 and (ii) wðxÞ ¼ 1; the latter being arbitrarily chosen as
there is no natural choice. In case (i) B is the identity matrix and A is dense; in (ii) both A and B are dense. In either case, the
matrix elements can be efficiently computed using Gaussian quadrature.

We now demonstrate the asymptotic properties of the Jacobi–Galerkin basis set. Using N ¼ 8, the leftmost plot in Fig. 2
shows the pointwise error in representing the analytic solution (with q ¼ 0, normalised to have unit rms over the interval) by
-1 -0.5 0 0.5 1
x

x10-10

x10-10

x10-10

x10-10

0

x10-10

x10-10

x10-10

Equation
Projection

1 2 3 4 5 6 7 8
degree

-8

-6

-4

-2

0

Jacobi-Galerkin
Chebyshev-tau/Chebyshev-Galerkin

A demonstration of the asymptotic properties and exponential convergence of the Galerkin method. (Left) The error between the analytic function
¼ 0 and its (a) projection onto the first 8 Jacobi–Galerkin basis functions and (b) the eigenvector associated with the most positive eigenvalue of the
A of method (i). Note that the error of the projection is quasi-equal-ripple. (Right) The spectrum ðlog10jv ijÞ of the eigenvector associated with the
sitive eigenvalue of Eq. (12) as determined by the Jacobi–Galerkin, Chebyshev-tau and a recombined Chebyshev–Galerkin method (these latter two
over-plot). Note that all methods converge exponentially fast, but the Jacobi–Galerkin method is superior.
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its projection onto the first eight basis functions fW1;W2; . . . ;W8g (solid line). The error is quasi-equal-ripple as expected,
producing a quasi-minimax fit. For comparison, the error between the analytic solution and the appropriately normalised
eigenvector corresponding to the most positive eigenvalue of A (method (i)) is shown by the dashed line. Both errors are
reassuringly small ðOð10�10Þ compared to the solutions which are Oð1Þ).

The exponential convergence of all three methods is demonstrated in the rightmost plot of Fig. 2, which shows the spec-
trum for the approximation to the eigenvector corresponding to q ¼ 0. Method (i) is shown by a dashed line with circles and
methods (ii) and (iii), which over-plot, as solid lines with triangles. As expected, all methods converge exponentially fast but,
although they have a similar slope, the Jacobi-Galerkin method is superior.

Lastly, we directly compare the two Galerkin schemes and comment briefly on their conditioning. In both cases, the (2-
norm) condition number of the matrix B�1A can be well approximated by a polynomial in N, the truncation, that behaves as
OðN4Þ (at least up to N ¼ 80). This is an identical scaling as would be expected from a generic spectral method based on any
type of Jacobi polynomials. However, despite having the same scaling, the two Galerkin methods do, in fact, achieve quite
different accuracies in numerical computations for the eigenvalues k. Fig. 3 shows the relative accuracy of the eigenvalues
(in order of increasing distance from the origin) as computed using Matlab command eig. In method (ii), two lines are plotted
corresponding to the two distinct ways of calculating the eigenvalues: (a) canonical eigenvalues of the matrix B�1A and (b)
generalised eigenvalues of the system Av ¼ kBv. The Jacobi–Galerkin approach produces the first approximately 40 eigen-
values with a relative error of just Oð10�15Þ. By comparison, the Chebyshev–Galerkin scheme only achieves an accuracy of
Oð10�10Þ for eigenvalues with index between 10 and 40; the generalised eigenvalue problem is, in general, more accurate
than its canonical formulation. At about index 40, both methods diverge from the true eigenvalues in a similar fashion.

2.5. Finding the Jacobi coefficients

Although Eqs. (4) or (8) give the general expression for an orthogonal basis in terms of a small number of Jacobi polyno-
mials for prescribed ðN;MÞ, a mechanism for finding their coefficients ci has not yet been provided. There are two levels on
which we can now proceed. The simplest is to specify all the other quantities: the precise form of the boundary conditions
and ða; bÞ. Given the structure of each basis function in (4) or (8), we can then find the required ci for specified n by simply
imposing the boundary conditions and orthogonality to the first few basis functions. As an illustration, consider the first
example shown in Section 2.3 where we construct a basis set satisfying W00nð1Þ ¼ Wnð1Þ ¼ 0. First, we need to find W1, the
lowest-degree polynomial that satisfies the boundary conditions: W1ðxÞ ¼ 1� x. The four ci are given, up to a normalisation,
by the three constraints, namely the two boundary conditions and orthogonality to W1:
Fig. 3.
using th
Galerki
formula
X4

i¼1

ciðnÞ
d2

dx2 Pð5=2;�1=2Þ
nþ2�i ðxÞ

�����
x¼1

¼
X4

i¼1

ciðnÞPð5=2;�1=2Þ
nþ2�i ðxÞ

���
x¼1
¼ 0; ð13Þ

X4

i¼1

ciðnÞ
Z 1

�1
Pð5=2;�1=2Þ

nþ2�i ðxÞð1� xÞð1� x2Þ�1=2 ¼ 0; ð14Þ
where the factor ð1� x2Þ�1=2 is the weight function ð1� xÞað1þ xÞb with a ¼ b ¼ �1=2. Having specified n in advance, we can
form the explicit linear system for the ci by using Eq. (A.6) to evaluate the Jacobi polynomials at x ¼ �1 and using computer
algebra to calculate the weighted integral of the known polynomial appearing in (14). The system is then readily solved for
the (unnormalised) ci. It is worth pointing out that unlike a naive Gram-Schmidt procedure (as illustrated in (1)), we do not
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A comparison of the relative error in the eigenvalues (ordered in increasing distance from the origin) for the two Galerkin methods as computed
e Matlab function eig. The Jacobi–Galerkin method achieves an accuracy of around Oð10�15Þ up to index of about 40. By contrast, the Chebyshev–

n scheme only achieves an accuracy of Oð10�10Þ. The two possible ways of computing its eigenvalues (either by a canonical or generalised
tion) are shown separately. Both Galerkin methods have condition numbers that scale as OðN4Þ.
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need to build the basis incrementally in n. The major downside of this approach, however, is that it does not generate an
expression for arbitrary n, leaving open the question of the asymptotic behaviour.

A more difficult approach is to leave n and possibly other quantities (for instance, ða; bÞ) unspecified. In this case, the
determination of the ci is, in general, highly non-trivial and in order to spare the user from needing to do this, we have com-
piled a database of boundary conditions where the ci are given explicitly in a large range of cases [13]. The complication
arises from solving the linear system (13), (14) where the coefficients of ci are not constant but functions of all the unknown
parameters. Furthermore, although it is straightforward to evaluate (13), (14) is troublesome to evaluate in general, being
the integral of a Jacobi polynomial Pð5=2;�1=2Þ

m ðxÞ with ð1� xÞ against a weight function which is not of the standard form
ð1� xÞ5=2ð1þ xÞ�1=2. In this simple example, a closed form expression can be obtained by using the formulae in [12] and
it is immediate to solve the system to find ci (up to a normalisation) as functions of n.

Computer algebra, making such a method practical, also holds this approach hostage by its own intrinsic limitations. In
particular, the system of equations, although linear in ci, will in general involve extremely lengthy expressions that depend
on the unspecified parameters. Formally, although a solution exists, present-day computer algebra cannot provide it (and, in
general, the software crashes in the attempt). Guided by the expectation that ci are polynomials in n, an alternative method is
simply to fit trial polynomials to expressions produced for specific n. For instance, consider trying to find c2=c1 which we
anticipate to be a ratio of polynomials
c2

c1
¼
PJ

i¼0ainiPK
i¼0bini

;

where J and K are unknown in advance. Note that the coefficients ai and bi, although independent of n, may depend on ða; bÞ
and other parameters appearing in the boundary conditions. We now proceed by empirical means by guessing K and J.
Substituting K þ J þ 2 values of c2=c1, derived from K þ J þ 2 basis functions of any specified n, we may solve the system.
To determine whether ðK; JÞ are sufficiently high a further value of n can be tested with the resulting formulae for the ci.
Although more cumbersome, the fact that this method explicitly removes the dependence on n from the ci means that other
free parameters may be carried and maximally general expressions for the ci obtained. Expressions for ci depending on arbi-
trary n, a; b and boundary condition parameters are given in [13].

2.6. Other considerations

We have already remarked that the Galerkin basis functions become asymptotically similar to a single Jacobi polynomial
as n!1. This ability to ‘forget’ the boundary conditions, for large n, in fact only holds in the bulk of the domain and not in
boundary layers. Indeed, it is within these boundary layers that the functions stray from the single Jacobi polynomial depen-
dence to satisfy the required boundary conditions. To make this possible there is, in general, a rather delicate cancellation
close to the boundary which is exacerbated by values of a and b greater than �1/2. This can be readily seen by considering
the individual Jacobi polynomials, Pða;bÞn ðxÞ with a; b > �1=2, making up any particular Galerkin function. These have extre-
mely pronounced maxima at x ¼ �1 yet must sum to produce much more modest behaviour (for example, quasi-equal-rip-
ple when a ¼ b ¼ �1=2), leading to loss of accuracy when using finite precision. We propose two remedies to evaluate the
basis functions very close to the boundaries: (i) calculating a boundary layer expansion of the function near x ¼ �1 or (ii)
computing in very high precision (using, for instance, the software package Maple). A recurrence relation satisfied by these
Galerkin basis functions, which would alleviate this problem, apparently does not exist.

A key use of these orthogonal basis functions is in the solution of the differential equation
Df ðxÞ ¼ gðxÞ;
where gðxÞ is given and D is some differential operator. After expanding the unknown function f ðxÞ in our trial space of func-
tions, a discretised system can either be formed by imposing that the residual, Df ðxÞ � gðxÞ, is identically zero at some set of
collocation points or by imposing that it is orthogonal to the same (in the traditional Galerkin scheme) or different set of
basis functions. In a collocation scheme, usually, the choice of grid is determined by its equivalence to the quadrature grid
required by the standard Galerkin scheme [3]. We briefly consider whether such a collocation scheme is viable here, or in
other words whether it is possible to represent an exact quadrature-based Galerkin scheme by a square matrix. In general,
the first K basis functions are of degree higher than K and a standard Gauss-Legendre scheme with K abscissae will not be
exact. The only chance of success is to tailor the scheme by encoding the information that the basis functions satisfy known
boundary conditions. However, DWn, and therefore the product DWnWm appearing in the integrated residual, satisfies no par-
ticular condition (barring the rather special case of, for example, Wnð1Þ ¼ 0) and no general scheme can be constructed.

3. Extension to a polar geometry

In either 2D or 3D polar geometries, due to the singularity of the coordinate systems at the origin, a certain regularity
condition applies to any function that is everywhere smooth. In the 3D case, a smooth function has a representation
X

lm

Ym
l ðh;/Þf m

l ðrÞ; f m
l ðrÞ ¼ rlgm

l ðr2Þ;
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where Ym
l is a spherical harmonic of degree l and order m and gm

l is smooth [3,14]. A similar result holds in the 2D polar case.
In this section, it will be shown that the machinery developed for the one-sided Cartesian case carries over to the spherical
geometry where, for each spherical harmonic component, the sole radial boundary condition is at r ¼ 1. In applications, it is
often expedient to define vector potentials depending on f ðr; h;/Þr̂ rather than f ðr; h;/Þr, where f is a scalar function and
r ¼ rr̂ the position vector. Since r is regular, this means that a slightly modified regularity condition must hold for the coef-
ficients f m

l ðrÞ ¼ rlþ1gm
l ðr2Þ. In the proceeding sections, we present examples involving both types of regularity as motivated

by physical problems which, for the most part, are trivially interchangeable by l$ lþ 1.

3.1. One sided Jacobi polynomials

For any given wavenumber l, an expedient basis in which to expand an unknown function of the form rlþ1gðr2Þ for some
smooth function g is the so-called one-sided Jacobi polynomials [3,15,16]:
Gnðr;a;b; lÞ ¼ rlþ1Pða;bÞn ð2r2 � 1Þ:
These are even, defined on r 2 ½0;1�, and satisfy the regularity conditions. Additionally, they are orthogonal,
Z 1

0
GnGmwðrÞdr ¼ dnmhn; wðrÞ ¼ ð1� r2Þar2ðb�lÞ�1;
for some hn and converge exponentially fast to any function satisfying the same regularity condition [14]. In addition, there
are two free parameters, ða; bÞ, that we are free to choose. However, as pointed out in [14], it is often expedient to choose b in
order that the weight function is independent of l, making the basis set much better conditioned for large l. Furthermore,
restrictions on the asymptotic behaviour (for large n) will further constrain ða; bÞ. For instance, suppose we wanted the basis
functions to be quasi-equal-ripple, mimicking the Chebyshev polynomials and their associated optimal properties. By using
Theorem 8.21.8 of [17] and the change of variable cos h ¼ 2r2 � 1, we can write
rlþ1Pða;bÞn ð2r2 � 1Þ � K sin
h
2

� ��a�1=2

cos
h
2

� �lþ1�b�1=2

cos Nhþ cð Þ; ð15Þ
where K, N and c are independent of h and N increases linearly with n. In order to obtain an asymptotically equal-ripple func-
tion, we need to choose a ¼ �1=2, b ¼ lþ 1=2 in order to remove the first two trigonometric prefactors. To obtain quasi-
equal-area polynomials, similar considerations lead to the choice a ¼ 1=2; b ¼ lþ 1=2.

3.2. Auto orthogonal basis sets

We now show it is possible to construct an auto-orthogonal regular basis set from the one-sided Jacobi polynomials
which, in essence, follows directly from the change of variable x ¼ 2r2 � 1 into the one-sided Cartesian case and absorbing
the factors of rlþ1 into the weight function. A more detailed demonstration is achieved by devising a companion problem in a
one-sided Cartesian geometry, associated with any given polar case, for which there is an auto-orthogonal basis set. Let us fix
b ¼ lþ 1=2 and consider arbitrary a > �1 along with M boundary conditions of degree N � 1 at r ¼ 1. We would like to show
that the (normalised) basis functions defined by
WnðrÞ ¼ rlþ1
XNþ1

i¼1

ciP
ðaþN;lþ1=2Þ
nþM�i ð2r2 � 1Þ ð16Þ
form an auto-orthogonal set with
Z 1

0
WnWmð1� r2Þadr ¼ dnm:
Note that the weight function, ð1� r2Þa, is now independent of b. By using the change of variable, x ¼ 2r2 � 1, such orthog-
onality is equivalent to
Z 1

�1
ð1þ xÞlþ1=2ð1� xÞa

XNþ1

i¼1

ciP
ðaþN;lþ1=2Þ
nþM�i ðxÞ

" # XNþ1

i¼1

ciP
ðaþN;lþ1=2Þ
mþM�i ðxÞ

" #
dx ¼ dnmkn;
for some kn. That is, the companion problem involves the functions
vnðxÞ ¼
XNþ1

i¼1

ciP
ðaþN;lþ1=2Þ
nþM�i ðxÞ;
which are orthogonal with respect to the weight function ð1� xÞað1þ xÞlþ1=2. We know from Section 2.1 that such a set gen-
erate an auto-orthogonal basis for any set of M boundary conditions of degree at most N � 1 at x ¼ 1. The only question that
remains is whether the M boundary conditions of degree at most N � 1 at r ¼ 1 translate to an equivalent set at x ¼ 1. Since
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ð1þ xÞlþ1vnðxÞ ¼ WnðrÞ and, using d
dr ¼ 4r d

dx, we can translate any boundary condition at r ¼ 1 into one involving derivatives of
the same order at x ¼ 1. It then follows immediately that the construction (16) is auto-orthogonal as well. Lastly, since the
Cartesian-companion basis functions behave asymptotically like Pða;bÞn ðxÞ, it follows that the same is true of Wn:
-0

0

1
a

Fig. 4.
bounda
propert
WnðrÞ � rlþ1Pða;lþ1=2Þ
nþM�1 ðxÞ
as n!1. When a ¼ �1=2, the Wn are quasi-equal-ripple, and when a ¼ 1=2, they are quasi-equal-area.

3.3. Examples

We will now explore two examples of auto-orthogonal basis sets in a polar geometry, both of which arise when consid-
ering the so-called poloidal and toroidal components of a magnetic field defined in r 6 1 which is in contact with a perfect
electrical conductor at r ¼ 1 [18]. We shall take a ¼ �1=2 and a ¼ þ1=2, respectively, to demonstrate the different asymp-
totic behaviour. Firstly, consider the toroidal boundary condition W0nð1Þ ¼ 0 with a ¼ �1=2. The associated auto-orthogonal
basis set is
WnðrÞ ¼
rlþ1ðr2 � lþ lr2 � 3Þ; n ¼ 1;

rlþ1P3
i¼1

ciP
ð3=2;lþ1=2Þ
nþ1�i ðxÞ; n P 2:

8><>: ð17Þ
Secondly, we consider the poloidal boundary condition W00nð1Þ ¼ Wnð1Þ ¼ 0 with a ¼ þ1=2. The basis set is
WnðrÞ ¼
4rlþ1ðr2 � 1Þð2lr2 � 2lþ 3r2 � 7Þ; n ¼ 1;

rlþ1P4
i¼1

ciP
ð5=2;lþ1=2Þ
nþ2�i ðxÞ; n P 2:

8><>: ð18Þ
Both examples are illustrated in Fig. 4; in either case, ci are multinomials in n and l whose lengthy expressions are available
in [13].

4. Orthogonality with respect to derivative operators

Although constructing Galerkin basis sets whose elements are mutually orthogonal is helpful in many cases, it is some-
times useful to extend the notion of orthogonality to include derivatives such as in Sobolev-type norms [19]. As discussed
below, such an extension admits the possibility of band-limited matrix discretisations of differential equations, clearly a
computational advantage. For instance, as noted in [20], a basis set for a second-order differential equation for which the
solution vanishes at x ¼ �1 is
Wn ¼ ð1� x2ÞPð1;1Þn ðxÞ: ð19Þ
Each basis function has symmetry (being either even or odd) and the matrices defined by
Aij ¼
Z 1

�1
W00j Wi dx; Bij ¼

Z 1

�1
WjWi dx;
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Plots of the example orthogonal basis functions for n ¼ 5;10;15 that behave as Oðrlþ1Þ as r ! 0. In (a), a ¼ �1=2; l ¼ 3 and the functions satisfy the
ry condition W0!n ð1Þ ¼ 0. In (b), a ¼ 1=2; l ¼ 10 and the functions satisfy the boundary conditions W00nð1Þ ¼ Wnð1Þ ¼ 0. Note the quasi-equal-ripple
y of the functions in (a) and the quasi-equal-area property in (b). The functions are normalised by relation (11).



P.W. Livermore / Journal of Computational Physics 229 (2010) 2046–2060 2057
are, within each symmetry class respectively, diagonal and tri-diagonal. That is, the basis functions are orthogonal as defined
by a relation involving the second derivative. This approach can be extended to equations of arbitrary order where, in each
case, the matrix B is band-limited. This sparse representation may be contrasted to the structure which occurs when the ma-
trix B is diagonal (as in Section 2). In this case, the matrix A is dense and there is no sparse description of the differential
operator.

Using such an approach expedites the analysis in many situations, for instance, the eigenvalue problem (12) where we
need only find the eigenvalues of a tri-diagonal matrix. However, the construction (19) requires us to use rather special
boundary conditions, namely that the function vanishes at either end of the interval. Note that on using (A.1) and (A.2) once,
Wn as defined above can be written
Wn ¼
X3

i¼1

ciP
ð0;0Þ
nþ3�iðxÞ; ð20Þ
where ci take the ratio ½1; 0;�1�. By applying both (A.3) and (A.4) to Pða;bÞn ðxÞ we find that
Pða;bÞn ðxÞ � Pðaþ1;bþ1Þ
n ðxÞ � Pðaþ1;bþ1Þ

n�2 ðxÞ
and so Wn � Pð�1;�1Þ
nþ2 ðxÞ as n!1.

It is worth remarking here that, when a and b are non positive integers, there are two issues that concern Pða;bÞn ðxÞ. First,
the standard orthogonality relation between the Jacobi polynomials becomes invalid as the weight function is not integrable.
However, there is no inconsistency here with the orthogonality of the basis functions themselves, for finite n, as the simi-
larity to Pð�1;�1Þ

n ðxÞ only holds in the asymptotic limit and not within boundary layers. Second, the standard three-term recur-
rence relation [21] ostensibly breaks down, because the coefficient of Pnþ1, expressed in terms of Pn and Pn�1, becomes zero.
However, this problem is only superficial and in fact there is a remarkable cancellation leaving Pð�1;�1Þ

n well-defined after all,
as can be seen by computing Pða;bÞn ðxÞ for arbitrary a and b and then defining a ¼ b ¼ �1.

4.1. Auto-orthogonality

We now generalise the above special case, restricted to functions that vanish at either end of the interval, to show that
auto-orthogonality extends to the boundary conditions
lf 0ð1Þ þ f ð1Þ ¼ 0; mf 0ð�1Þ þ f ð�1Þ ¼ 0;
for any l; m. The basis set defined by
Wn ¼
X3

i¼1

ciP
ð0;0Þ
nþ2�iðxÞ; n P 1; ð21Þ
satisfies
Z 1

�1
Wn

d2Wm

dx2 dx ¼ dnm; ð22Þ
where the (unnormalised) ci are found to be
c1 ¼ lmn4 � n2lm� 2n2lþ 2n2m� 4; ð23Þ
c2 ¼ 2ðmþ lÞð2nþ 1Þ; ð24Þ
c3 ¼ �2mþ 2lþ 4þ ð�2lmþ 4l� 4mÞnþ ð�5lmþ 2l� 2mÞn2 � 4n3lm� lmn4: ð25Þ
Note that (20) is of the same form as (21) shifted in n by 1. It is of interest to note that the matrices defined by the elements
Aij ¼
Z 1

�1
WiðxÞ

dWjðxÞ
dx

dx; Bij ¼
Z 1

�1
WiðxÞWjðxÞdx; ð26Þ
are, respectively, upper triangular with a non-zero sub-diagonal and penta-diagonal.
Additionally, note that the coefficients ci are proportional to [1, 0, �1] in the limit n!1. As above, this means that
WnðxÞ � Pð�1;�1Þ
nþ1 ðxÞ
as n!1. These results are apparently only valid for a ¼ b ¼ 0 and do not generalise, as in Section 2, to arbitrary ða; bÞ. This
point is discussed further in Section 5.

4.2. Extension to polar case

Lastly, of interest in a spherical geometry, is orthogonality involving
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D ¼ @2

@r2 þ
2
r
@

@r
� lðlþ 1Þ

r2 ;
the radial part of the Laplacian operator when looking for a separable solution using spherical harmonics in solid angle. There
exists an orthonormal basis of polynomials with
Z 1

0
DðWnÞWmr2dr ¼ dnm ð27Þ
satisfying the boundary condition
ldW
dr
ð1Þ þWð1Þ ¼ 0
for any (real) l, where
Wn ¼ rlþ1
X4

i¼1

ciP
ð2;lþ1=2Þ
nþ1�i ð2r2 � 1Þ;
and with coefficients ci given in [13].
For this basis set, it is also of note that the matrix defined by
Bij ¼
Z 1

0
WiðrÞWjðrÞr2dr ð28Þ
is tri-diagonal.
Additionally, the coefficients ci are proportional to [1, �3, 3, �1] in the limit n!1. By applying (A.3) thrice to Pða;bÞn ðxÞwe

find that
Pða;bÞn ðxÞ � Pðaþ3;bÞ
n ðxÞ � 3Pðaþ3;bÞ

n�1 ðxÞ þ 3Pðaþ3;bÞ
n�2 ðxÞ � Pðaþ3;bÞ

n�3 ðxÞ:
Thus
WnðrÞ � rlþ1Pð�1;lþ1=2Þ
n ðxÞ
as n!1. Note that Jacobi polynomials with a ¼ �1 are formally undefined (although this relation holds only in the asymp-
totic limit n!1 and, for finite n, they are well defined.) However, since b is a positive half integer, the 3-term recurrence
relation remains valid. As before, the structure of these basis functions is fixed: we have no latitude in being able to vary
ða; bÞ and so their asymptotic behaviour. However, this shortcoming is outweighed by the utility of being able to discretise
the Laplacian operator as the inverse of the tri-diagonal matrix, B�1.

5. Discussion

In this paper, the construction of auto-orthogonal basis sets in a variety of geometries is described alongside many illus-
trative cases. Many more examples, including common physically motivated boundary conditions, can be found in [13]. We
end with a discussion on what aspects of auto-orthogonality can be proven, and what is left to the interested reader as future
research.

For a given set of M boundary conditions up to degree N � 1, the proof of not only auto-orthogonality but the exponential
convergence and asymptotic properties of the basis sets is given, in so far as what is currently possible, in [12]. The property
of auto-orthogonality appears to rest on the rather complex algebraic structure of non-standard integrated products of Jacobi
polynomials:
Z 1

�1
Pðaþl;bþmÞ

n ðxÞPðaþl;bþmÞ
m ðxÞð1þ xÞbð1� xÞa dx; ð29Þ
for arbitrary real ða; bÞ > �1 and positive integers ðm;lÞ. For specified ðN;MÞ, the generalised construction as described in
Sections 2 and 3 can be proved. What is yet unproven is the construction for unspecified ðN;MÞ, a much lower-level result
which is presumably underpinned by a property much more fundamental than those currently understood. Furthermore, a
general theory on which the results supplied in Section 4 (orthogonality relations involving derivatives) are based is also out
of reach and it is therefore difficult to generalise the given examples. In contrast to the construction in Section 2, the values of
ða; bÞ are apparently not free and are somehow intrinsically determined by the definition of the differential operator appear-
ing inside the orthogonality integral.

In the first example in Section 4 we considered an orthogonality relation based on the second derivative operator. Note
that
d2

dx2 Pða;bÞn ðxÞ ¼ Cðn;a;bÞPðaþ2;bþ2Þ
n�2 ðxÞ
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for some C and thus the orthogonality relation (22), when a ¼ b ¼ 0, involves integrated products of quantities of the form
Z 1

�1
Pð2;2Þn ðxÞPð0;0Þm ðxÞdx;
very similar, though distinct, to those of (29). It is unclear why auto-orthogonality does not extend to arbitrary ða; bÞ.
Additionally, in the example of the orthogonality relation involving the (polar) Laplacian, we can gain insight by convert-

ing to a Cartesian geometry by the change of variable x ¼ 2r2 � 1. The system (27) is equivalent to the following
eD ¼ 2ð1þ xÞ d2

dx2 þ ð3þ 2lÞ d
dx
; Wn ¼

X4

i¼1

ciP
ð2;lþ1=2Þ
nþ1�i ðxÞ;
with
 Z 1

�1

eDðWnÞWmð1þ xÞlþ1=2dx ¼ dnmkn;
for some kn and where a generalised first order boundary condition is imposed at x ¼ 1. Note that
eDPða;bÞn ðxÞ ¼ Cða; b;n; xÞPðaþ2;bÞ
n�1 ðxÞ;
where C becomes independent of x, for each n, only when b ¼ lþ 1=2. This suggests that, for this choice of differential oper-
ator, we must choose b ¼ lþ 1=2 for auto-orthogonality, which is found to be the case. Furthermore, as above, the choice of a
is not arbitrary and we must choose a ¼ 2 in order for the basis functions to become orthogonal (although it is not clear
why).

These examples strongly suggest the following conjecture. Consider a differential operator H which acts as a raising (or
lowering) operator on a Jacobi polynomial:
HðPða;bÞn ðxÞÞ ¼ Cðn;a;bÞPðaþa;bþbÞ
n�q ðxÞ
for some C, non-negative integer q and integers (either positive or negative) ða; bÞ. Then we can find an auto-orthogonal basis
set for which
Z 1

�1
HðWnÞWmð1� xÞað1þ xÞbdx ¼ dnm:
The determination of ða; bÞ, which depend on H, remains an open question. Furthermore, guided by the examples above, we
speculate that the matrix representing integrated products of such basis functions,
Anm ¼
Z 1

�1
WnWmð1� xÞað1þ xÞbdx;
is band-limited, meaning that the action of H on the basis set can be written succinctly as A�1, the inverse of a band-limited
matrix. Further research on auto-orthogonal schemes, particularly with regard to orthogonality relations involving deriva-
tives, is clearly of great interest as such a general construction would allow a large subset of differential operators to be dis-
cretised in terms of such sparse matrices.

Acknowledgments

PL was supported by NSF Grant number DMS0724331 and would like to thank Professor Glenn Ierley for useful discus-
sions throughout this work.

Appendix A

We make use of the following identities satisfied by Jacobi polynomials (see [22, p. 276])
ð2nþ aþ bþ 2Þð1� xÞPðaþ1;bÞ
n ¼ 2ðnþ aþ 1ÞPða;bÞn � 2ðnþ 1ÞPða;bÞnþ1 ; ðA:1Þ

ð2nþ aþ bþ 2Þð1þ xÞPða;bþ1Þ
n ¼ 2ðnþ bþ 1ÞPða;bÞn þ 2ðnþ 1ÞPða;bÞnþ1 ; ðA:2Þ

ð2nþ aþ bÞPða�1;bÞ
n ¼ ðnþ aþ bÞPða;bÞn � ðnþ bÞPða;bÞn�1 ; ðA:3Þ

ð2nþ aþ bÞPða;b�1Þ
n ¼ ðnþ aþ bÞPða;bÞn þ ðnþ aÞPða;bÞn�1 ; ðA:4Þ

dk

dxk
Pða;bÞn ðxÞ ¼ Cðaþ bþ nþ 1þ kÞ

2kCðaþ bþ nþ 1Þ
Pðaþk;bþkÞ

n�k ðxÞ: ðA:5Þ
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For imposing boundary conditions, we make use of the following:
dk

dxk
Pða;bÞn ð�1Þ ¼ ð�1Þnþk 2�kCðnþ kþ aþ bþ 1ÞCðnþ aþ 1Þ

Cðnþ aþ bþ 1ÞCðkþ aþ 1ÞCðn� kþ 1Þ : ðA:6Þ
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